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Mathematicallens
Dave Ebert

(a) to predict the length of a metal 
bar of a structure that sells for 
$40,000.

2.	 Ebert measured the distance between 
the nodes and found it to be 84 
inches. The length of the metal bar 

for the structure that the Lions Club 
purchased is 75.5 inches. Why are 
these lengths not the same?

3.	 If the icosahedron were completely 
covered with material, how much 
material would be needed? In other 
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Playground Icosahedron

Photograph 1
A net for climbing in Lewis 
Park, McFarland, Wisconsin

Photograph 2
A truncated icosahedron 

within the icosahedron

In spring 2007, the Lions Club of McFar-
land, Wisconsin, built a unique play-
ground in Lewis Park that includes the 
climbing structure seen in photograph 
1. This structure is made up of a num-
ber of metal bars of the same length that 
form equilateral triangular regions. The 
play system was supplied by Lee Rec-
reation in Cambridge, Wisconsin, and 
built by community volunteers.

1.	 (a) �Lee Recreation sells three versions 
of the climbing structure shown 
in photograph 1. The length of 
the metal bar used to make each 
size and the cost per structure are 
provided in table 1. Graph the 
cost versus the length and develop 
an algebraic model that describes a 
possible relationship between the 
cost and the length.

	 (b) �Use your algebraic model from (a) 
to predict the cost of a structure 
for which the length of the metal 
bar is 150 inches.

	 (c) �Use your algebraic model from 
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number 1 in this equation. Any 
number could be used, but then we 
could divide both sides of the equa-
tion by this number and relabel 
the unknowns as p, q, and r, an 
approach that puts us right back at 
where we started. Select three cases 
from table 2, set up three equa-
tions in three unknowns, and solve 
for a, b, and c.

	 (c) �Test the validity of the formula 
from question 4(b) by seeing 
whether it works for the remaining 
two cases in table 2. If the formula 
also works for these cases, does 
this fact constitute a proof that the 
formula works for all solids?

5.	 Inside the metal icosahedron structure 
in photograph 1 is an additional 
climbing structure made of rope. A 
regular pentagon extends from each 
vertex of the metal icosahedron. These 
pentagons are then connected to one 
another to make a number of regular 
hexagons (see photograph 2). The 
resulting figure, which looks like a 
soccer ball, is a truncated icosahedron 
(see fig. 2). Show that the relationship 
determined in question 4(b) continues 
to hold for the truncated icosahedron.

words, what is the surface area of the 
icosahedron?

4.	 (a) �Use the nets in figure 1 to make 
a regular tetrahedron, a cube, 
a regular octahedron, a regular 
dodecahedron, and a regular ico-

sahedron, respectively. Count the 
number of vertices (V), faces (F), 
and edges (E) for these five solids 
and record your results in table 
2. Try to determine a relationship 
among V, F, and E.

	 (b) �The relationship among the num-
ber of vertices, faces, and edges may 
not be obvious. A strategy that can 
be used to discover this relationship 
is to assume that it is of the form 
aV + bF + cE = 1 (in other words, 
each quantity is a linear function 
of the other two). Note that no loss 
in generality results from using the 

Fig. 1  These nets can be used to make the five 

platonic solids: a regular tetrahedron (a), a cube 

(b), a regular octahedron (c), a regular dodeca-

hedron (d), and a regular icosahedron (e).

(e)

(a)

(c)

(b)

(d)

Table 1

Lee Recreation Climbing Structures

Size of Structure
Length of Metal Bar

(x)
Cost of Structure

(y)

Small 54.5 inches $14,999

Medium 75.5 inches $19,499

Large 107 inches $27,499

Table 2

Euler’s Formula

Vertices
(V)

Faces
(F)

Edges
(E)

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Fig. 2  A truncated icosahedron can be cre-

ated by using Pedagoguery Software Inc.’s 

Poly (www.peda.com/poly).
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Mathematical Lens solutions

1.	 (a) �You can use the TI-84 to study 
the relationship between the cost 
per structure and the length of 
the metal bar. Begin your analysis 
by entering the data in table 1 
into the List Editor. The relation-
ship appears to be linear, and the 
results for the regression line (see 
fig. 3) show that there is a strong 
positive correlation between the 
two quantities.

	 (b) �Using the line of best fit and the 
TI-84, show that when x = 150, 
then y = $37,659.40. Therefore, 
the cost of the structure would be 
about $37,659.00.

	 (c) �The value of x for which y = 
$40,000 can be found in many 
ways: (1) by solving a linear equa-
tion by hand; (2) by using the 
Solver capability of the TI-84; or 
(3) by finding the point of inter-
section between the line of best fit 
and y = $40,000. Using the first 
option, we have 239.3483709x + 
1757.145363 = $40,000.00 for x 
yields x ≈160 inches. 

2.	 The difference in lengths can be 
accounted for by the thickness of the 
caps that the metal bars slide into.

3.	 The surface of the icosahedron con-
sists of 20 equilateral triangles. The 
area of an equilateral triangle with 
side length s is equal to

3
4

20
3

4
84 61106 75249

2

2

s .

. . . ft. ft× × ≈

	 The surface area of the icosahedron is 
equal to

xxx

20
3

4
84 61106 75

2 2 in in  in  in× × ( ) ≈ . .

	 Therefore, the surface area is approx-
imately equal to 61,106 in2, or about 
424 ft2.

4.	 (a) �The completed table 2 should 
look like table 3.

	 (b) �Using the first three cases in table 
3, you can set up three equations 
in three unknowns as follows:

4a + 4b + 6c = 1
8a + 6b + 12c = 1
6a + 8b + 12c = 1

	
The solution to this system of equa-
tions is a =1/2, b = 1/2, and c = –1/2. 
Therefore, the relationship among V, 
F, and E appears to be V + F – E = 2. 

	 (c) �The formula is valid for the 
dodecahedron and the icosahe-
dron. It cannot be concluded that 
the formula is valid for all other 
solids. A finite number of cases is 
not enough to constitute a proof.

5.	 The truncated icosahedron has 60 
vertices, 32 faces, and 90 edges. Note 
that V + F – E = 60 + 32 – 90 = 2. 
Interested readers might want to try 
their hand at proving this formula, 
commonly called Euler’s formula.

Fig. 3  The calculator obtains a linear relation-

ship between bar length and cost.
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tions, go to the NCTM Web site: www.nctm.
org/mt. Send your questions to the “Math-
ematical Lens” editors.

Table 3

Euler’s Formula

Vertices
(V)

Faces
(F)

Edges
(E)

Tetrahedron 4 4 6

Cube 8 6 12

Octahedron 6 8 12

Dodecahedron 20 12 30

Icosahedron 12 20 30
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Use this photograph to create your own questions in the style of “Mathematical Lens.” Send your questions to the “Mathemati-
cal Lens” editors: Ron Lancaster, ron2718@nas.net, or Brigitte Bentele, brigitte.bentele@trinityschoolnyc.org.
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“Climbing Forever with No End in Sight,” photograph taken at Indian Beach, North Sydney, Nova Scotia, by Martha Lowther, who teaches 

mathematics at the Tatnall School, Wilmington, Delaware




